Complex Numbers Practice Test (Mathematics)

Complex Numbers Questions with Answers:

Triangle ABC, A(z1), B(z2), C(z3) is inscribed in the circle |z| = 2. If internal bisector of the angle A meets its circumcircle again at D(zd) then
(A) zd2 = z2z3
(B) zd2 = z1z3
(C) zd2 = z2z1
(D) none of these

Ans. (a)

If the complex numbers z1, z2, z3 represent the vertices of an equilateral triangle such that |z1| = |z2| = |z3|, then z1 + z2 + z3 =
(a) 0
(b) 1
(c) –1
(d) None of these

Ans. (a)

If z1, z2, z3 are vertices of an equilateral triangle with z0 its centroid, then z12 + z22 + z32 =
(a) z02
(b) 9z02
(c) 3z02
(d) 2z02

Ans. (c)

Related: Hydrocarbons – Organic Chemistry Questions

If (1 + x + x2)n = a0 + a1x + a2x2 + … + arxr + … + a2nx2n, then a0 + a3 + a6 + =
(a) 3n – 1
(b) 3n
(c) –3r
(d) 3r – 1

Ans. (a)

Which of the following is correct?
(A) 6 + i > 8 – i
(B) 6 + i > 4 – i
(C) 6 + i > 4 + 2i
(D) None of these

Ans. (d)

Number of solutions to the equation (1 –i)x = 2x is
(a) 1
(B) 2
(C) 3
(D) no solution

Ans. (a)

If z1 and z2 be the nth roots of unity which subtend right angle at the origin. Then n must be of the form
(a) 4k + 1
(b) 4k + 2
(C) 4k + 3
(D) 4k

Ans. (d)

Related: Work energy and power sample problems with solutions

If z3 – 2z2 + 4z – 8 = 0 then
(A) |z| = 1
(B) |z| = 2
(C) |z| = 3
(D) None

Ans. (b)

If z  be  any  complex  number  such  that |3z –2| + |3z +2| = 4,  then  locus  of  z is
(A)  an ellipse
(B) a circle
(C)  a  line-segment
(D)  None of these

Ans. (c)

For  a  complex  number   z ,  | z – 1| + |z +1| = 2. Then z lies on a
(A) parabola
(B) line segment
(C) circle
(D) none of these

Ans. (b)

If  |z1/z2| = 1 and arg (z1 z2) = 0, then
(A) z1 =  z2
(B) |z2|2 = z1z2
(C) z1z2 =  1
(D) none of these

Ans. (b)

Number of non-zero integral solutions to (3 + 4i)n = 25n is
(A) 1
(B) 2
(C) finitely many
(D) none of these

Ans. (d)

Related: Free Trigonometry Practice Tests

If |z| < 4, then  | iz +3 – 4i| is less than
(A) 4
(B) 5
(C) 6
(D) 9

Ans. (d)

If the equation |z – z1|2 + | z – z2|2 = k represents the equation of a circle, where z1 º 2+ 3i, z2 º 4 + 3i are the extremities of a diameter, then the value of k is
(A) ¼
(B) 4
(C) 2
(D) None of these

Ans. (b)

If z = x + iy satisfies the equation arg (z – 2) = arg(2z + 3i), then 3x – 4y is equal to
(A) 5
(B) –3
(C) 7
(D) 6

Ans. (d)

Number of solutions of Re (z2) = 0 and |Z| = aÖ2, where z is a complex number and a > 0, is
(A) 1
(B) 2
(C) 4
(D) 8

Ans. (a)

If (x – iy) 1/3 = a – ib, then x/a + y/b equals
(A) -2 (a2 + b2)
(B) 4 (a + b)
(C) 4 (a – b)
(D) 4 ab

Ans. (a)

Related: Physics Optics Problems

If |z| = 1, then |z – 1| is
(A) < |arg z|
(B) >|arg z|
(C) = |arg z|
(D) None of these

Ans. (a)

The  locus  of  z  which  satisfied  the  inequality log0.5|z – 2| > log0.5|z – i| is  given  by
(A) x+ 2y > 1
(B) x – y < 0
(C) 4x – 2y >  3
(D) none  of these

Ans. (c)

If |z1| = 4, |z2| = 4, then |z1 + z2 + 3 + 4i| is less than
(A) 2
(B) 5
(C) 10
(D) 13

Ans. (d)

If  |z +1|  = z + 1 , where z is a  complex  number, then  the locus  of z  is
(A) a straight line
(B) a ray
(C) a circle
(D) an arc of a circle

Ans. (b)

If the complex numbers z1, z2, z3 are in A.P., then they lie on a
(A) circle
(B) parabola
(C) line
(D) ellipse

Ans. (c)

Related: Anaerobic respiration quiz

If  points  corresponding  to  the complex  numbers z1, z2, z3 and z4 are  the  vertices of a  rhombus, taken in  order,  then  for a non-zero  real number k
(A)  z1 – z3 = i k( z2 –z4)
(B) z1 – z2 = i k( z3 –z4)
(C) z1 + z3 = k( z2 +z4)
(D) z1 + z2 = k( z3 +z4)

Ans. (a)

If z is a complex number, then |3z – 1| = 3|z – 2| represents
(a) y-axis
(b) a circle
(c) x-axis
(d) a line parallel to y-axis

Ans. (d)

The roots of equation zn = (z +1)n
(A) are vertices of regular  polygon
(B) lie on a circle
(C) are collinear
(D) none of these

Ans. (c)

Let z1 and z2 be the complex roots of the equation 3z2 + 3z+ b = 0. If the origin, together with the points represented by z1 and z2 form an equilateral triangle then the value of b is
(A) 1
(B) 2
(C) 3
(D) None of these

Ans. (a)

Related: kinetic theory of gases practice problems

If x = 1 + i, then the value of the expression    x4 – 4x3 + 7x2 – 6x + 3 is
(A) –1
(B) 1
(C) 2
(D) None of these

Ans. (b)

For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of |z – z2| is
(a) 4
(b) 3
(c) 1
(d) 2

Ans. (d)

If two non-zero complex numbers are such  that   |z1 + z2|  = |z1 |  – |z2|  then z1/z2 is;
(a) a positive real number
(b) a negative real number
(c) a purely imaginary number
(d) none of these

Ans. (b)

About the author

Yash

Yash is co-founder of Examsegg.

error: Content is protected !!
Why Is Physical Science Important? Who Was the Youngest US President? Who Was the US President During World War II? Who Was the President of the US During WW1?