Mathematical Induction questions with answers

Mathematical induction and Divisibility problems:

For all positive integral values of n, 32n – 2n + 1 is divisible by
(a) 2
(b) 4
(c) 8
(d) 12

Ans. (a)

Related: Electric field test questions

If n ∈ N, then x2n – 1 + y2n – 1 is divisible by
(a) x + y
(b) x – y
(c) x2 + y2
(d) x2 + xy

Ans. (a)

If n ∈ N, then 72n + 23n – 3. 3n – 1 is always divisible by
(a) 25
(b) 35
(c) 45
(d) None of these

Ans. (a)

If p is a prime number, then np – n is divisible by p when n is a
(a) Natural number greater than 1
(b) Irrational number
(c) Complex number
(d) Odd number

Ans. (a)

Related: p Block elements questions

For every natural number n, n(n + 1) is always
(a) Even
(b) Odd
(c) Multiple of 3
(d) Multiple of 4

Ans. (a)

If n ∈ N, then 11n + 2 + 122n + 1 is divisible by
(a) 113
(b) 123
(c) 133
(d) None of these

Ans. (c)

For every natural number n, n(n2 – 1) is divisible by
(a) 4
(b) 6
(c) 10
(d) None of these

Ans. (b)

Related: General Organic Chemistry questions

The statement P(n) “1 x 1! + 2 x 2! + 3 x 3! + … + n x n! = (n + 1)! – 1” is
(a) True for all n > 1
(b) Not true for any n
(c) True for all nN
(d) None of these

Ans. (c)

For every natural number n
(a) n > 2n
(b) n < 2n
(c) n = 2
(d) n = 2n2

Ans. (b)

The remainder when 599 is divided by 13 is
(a) 6
(b) 8
(c) 9
(d) 10

Ans. (b)

Related: online preparation quiz Euclidean Geometry

For each n ∈ N, the correct statement is
(a) 2n < n
(b) n2 > 2n
(c) n4 < nn
(d) 23n > 7n + 1

Ans. (c)

10n + 3(4n+2) + 5  is divisible by (n ∈ N)
(a) 7
(b) 5
(c) 9
(d) 17

Ans. (c)

For natural number n, (n!)2 > nn, if
(a) n > 3
(b) n > 4
(c) n ³ 4
(d) n ³ 3

Ans. (d)

Related: Kinetic theory test

For natural number n, 2n (n – 1)! < nn, if
(a) n < 2
(b) n > 2
(c) n ³ 2
(d) Never

Ans. (b)

For positive integer n, 10n – 2 > 81n, if
(a) n > 5
(b) n ³ 5
(c) n < 5
(d) n > 6

Ans. (b)

When 2301 is divided by 5, the least positive remainder is
(a) 4
(b) 8
(c) 2
(d) 6

Ans. (c)

Related: Electrochemistry practice quiz

For every positive integer n, 2n < n! when
(a) n < 4
(b) n ³ 4
(c) n < 3
(d) None of these

Ans. (b)

x(xn–1 – nan–1) + an(n–1) is divisible by (x – a)2 for
(a) n > 1
(b) n > 2
(c) All nN
(d) None of these

Ans. (c)

Related: binomial theorem practice problems

For every positive integral value of n, 3n > n3 when
(a) n > 2
(b) n ³ 3
(c) n ³ 4
(d) n < 4

Ans. (c)

About the author

Yash

Yash is co-founder of Examsegg.

error: Content is protected !!
Why Is Physical Science Important? Who Was the Youngest US President? Who Was the US President During World War II? Who Was the President of the US During WW1?